Thermoplastic Elastomer surface undergoing laser cleaning showing precise contamination removal
Todd Dunning
Todd DunningMAUnited States
Optical Materials for Laser Systems

Thermoplastic Elastomer Laser Cleaning Settings

We've found that laser cleaning Thermoplastic Elastomer works best when we start with conservative power levels to leverage its good absorption of laser energy, which removes surface contaminants effectively without immediate heat buildup. This approach restores the material's flexibility and surface integrity quickly, as its low thermal conductivity keeps heat localized and prevents widespread softening. In our experience, the elastomer's rubber-like resilience sets it apart from rigid plastics, allowing multiple passes that expose clean layers beneath residues from automotive or medical applications. We adjust scan speeds to be moderate, ensuring the process reduces oxidation risks while maintaining the material's shape. However, always monitor for excessive dwell time at the end, as prolonged exposure can cause deformation in this sensitive composite.

Thermoplastic Elastomer Machine Settings

Power Range

100
W
1
100
120

Wavelength

1,064
nm
355
1,064
1.1e4

Spot Size

100
μm
0.1
100
500

Repetition Rate

50
kHz
1
50
200

Energy Density

1.2
J/cm²
0.1
1.2
20

Pulse Width

10
ns
0.1
10
1,000

Scan Speed

500
mm/s
10
500
5,000

Pass Count

2
passes
1
2
10

Overlap Ratio

50
%
10
50
90

Dwell Time

100
μs
0
100
200

Thermoplastic Elastomer Material Safety

Shows damage risk across parameter space. Green = safe, Red = damage danger.

DANGER
Fluence:25.46 J/cm²
From optimal:71%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Thermoplastic Elastomer Energy Coupling

Shows laser energy transfer efficiency. Green = high coupling (energy absorbed), Red = poor coupling (energy reflected).

GOOD
Fluence: J/cm²
From optimal:29%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Thermoplastic Elastomer Thermal Stress Risk

Shows thermal stress and distortion risk. Green = low stress risk, Red = high stress/warping/cracking risk.

HIGH RISK
Fluence: J/cm²
From optimal:63%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Thermoplastic Elastomer Cleaning Efficiency

Shows cleaning performance across parameter space. Green = optimal effectiveness, Red = ineffective.

GOOD
Fluence:25.46 J/cm²
From optimal:33%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Thermoplastic Elastomer Heat Buildup

See if your multi-pass cleaning will overheat and damage the material

Excellent

Heat Safety

Heat Control

Cooling Efficiency

Pass Optimization

📈 Heat Profile

Safe (<150°C)
Damage (>250°C)
0°C100°C200°C300°C✓ Safe🚨 Damage20°CPass 1Pass 2

🔧 Laser Settings

Pulse Energy:2000.00 mJ
Total Sim Time:60.4s

🌡️ Live Temperature

20°C
✅ Safe
Pass 1 of 2
Time: 0.0s / 60.4s

▶️ Simulation Controls

Diagnostic & Prevention Center

Proactive strategies and reactive solutions for thermoplastic elastomer

🌡️thermal management

Heat accumulation

Impact: Excessive heat can damage substrate or alter material properties

Solutions:

  • Reduce repetition rate
  • Increase scan speed
  • Add cooling time between passes

Prevention: Monitor surface temperature and adjust parameters accordingly

🔍surface characteristics

Variable surface roughness

Impact: Inconsistent cleaning results across different surface textures

Solutions:

  • Adjust energy density based on surface condition
  • Use multiple passes with progressive settings
  • Pre-characterize surface before cleaning

Prevention: Standardize surface preparation procedures

Thermoplastic Elastomer Dataset Download

License: Creative Commons BY 4.0 • Free to use with attribution •Learn more

Parameter Relationships

Shows how changing one parameter physically affects others. Click any node to see its downstream impacts and role.

PowerRangeWavelengthSpotSizeRepetitionRateEnergyDensityPulseWidthScanSpeedPassCountOverlapRatioDwellTime

Power Range

Amplifies damage risk in Pulse Width and Energy Density. Keep low to maintain safety margins.

Spot Size

Same power in a smaller spot creates much higher energy density.

Energy Density

Higher power delivers more energy per pulse, removing more material.

Pulse Width

More power means higher peak intensity. Too much can damage the material.

Pass Count

Using more passes means you can use lower power and still get the job done.