Terracotta surface undergoing laser cleaning showing precise contamination removal
Yi-Chun Lin
Yi-Chun LinPh.D.Taiwan
Laser Materials Processing

Terracotta Laser Cleaning Settings

When laser cleaning terracotta, watch out for its porous nature right from the start—it can trap heat unevenly and lead to cracks if you're not careful. I've seen this happen when folks push too hard too soon, so begin by testing a small area with gentle pulses to gauge how the surface responds. This material tends to absorb laser energy moderately well, which helps remove dirt and grime without much effort, but its low heat spreading means you should keep dwell times short to avoid localized overheating. Move to a multi-pass approach next, starting low on power and building up only as needed. Terracotta's relative fragility compared to denser stones calls for wider scan overlaps, ensuring even coverage without stressing the structure. What sets it apart is that baked-clay makeup, so it cleans up beautifully for heritage pieces but demands you pause between passes to let it cool. Avoid high speeds early on; slower ones prevent surface pitting. In my experience, this setup preserves the earthy texture while stripping away years of buildup safely.

Terracotta Machine Settings

Power Range

100
W
1
100
120

Wavelength

1,064
nm
355
1,064
1.1e4

Spot Size

100
μm
0.1
100
500

Repetition Rate

50
kHz
1
50
200

Energy Density

2.5
J/cm²
0.1
2.5
20

Pulse Width

10
ns
0.1
10
1,000

Scan Speed

500
mm/s
10
500
5,000

Pass Count

2
passes
1
2
10

Overlap Ratio

50
%
10
50
90

Dwell Time

100
μs
0
100
200

Terracotta Material Safety

Shows damage risk across parameter space. Green = safe, Red = damage danger.

DANGER
Fluence:25.46 J/cm²
From optimal:71%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Terracotta Energy Coupling

Shows laser energy transfer efficiency. Green = high coupling (energy absorbed), Red = poor coupling (energy reflected).

GOOD
Fluence: J/cm²
From optimal:33%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Terracotta Thermal Stress Risk

Shows thermal stress and distortion risk. Green = low stress risk, Red = high stress/warping/cracking risk.

HIGH RISK
Fluence: J/cm²
From optimal:58%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Terracotta Cleaning Efficiency

Shows cleaning performance across parameter space. Green = optimal effectiveness, Red = ineffective.

GOOD
Fluence:25.46 J/cm²
From optimal:33%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Terracotta Heat Buildup

See if your multi-pass cleaning will overheat and damage the material

Excellent

Heat Safety

Heat Control

Cooling Efficiency

Pass Optimization

📈 Heat Profile

Safe (<150°C)
Damage (>250°C)
0°C100°C200°C300°C✓ Safe🚨 Damage20°CPass 1Pass 2

🔧 Laser Settings

Pulse Energy:2000.00 mJ
Total Sim Time:60.4s

🌡️ Live Temperature

20°C
✅ Safe
Pass 1 of 2
Time: 0.0s / 60.4s

▶️ Simulation Controls

Diagnostic & Prevention Center

Proactive strategies and reactive solutions for terracotta

🌡️thermal management

Heat accumulation

Impact: Excessive heat can damage substrate or alter material properties

Solutions:

  • Reduce repetition rate
  • Increase scan speed
  • Add cooling time between passes

Prevention: Monitor surface temperature and adjust parameters accordingly

🔍surface characteristics

Variable surface roughness

Impact: Inconsistent cleaning results across different surface textures

Solutions:

  • Adjust energy density based on surface condition
  • Use multiple passes with progressive settings
  • Pre-characterize surface before cleaning

Prevention: Standardize surface preparation procedures

Terracotta Dataset Download

License: Creative Commons BY 4.0 • Free to use with attribution •Learn more

Parameter Relationships

Shows how changing one parameter physically affects others. Click any node to see its downstream impacts and role.

PowerRangeWavelengthSpotSizeRepetitionRateEnergyDensityPulseWidthScanSpeedPassCountOverlapRatioDwellTime

Power Range

Amplifies damage risk in Pulse Width and Energy Density. Keep low to maintain safety margins.

Spot Size

Same power in a smaller spot creates much higher energy density.

Energy Density

Higher power delivers more energy per pulse, removing more material.

Pulse Width

More power means higher peak intensity. Too much can damage the material.

Pass Count

Using more passes means you can use lower power and still get the job done.