Concrete laser cleaning visualization showing process effects
Todd Dunning
Todd DunningMAUnited States
Optical Materials for Laser Systems
Published
Jan 6, 2026

Concrete

Concrete Machine Settings

Optimal laser parameters and operating ranges for effective cleaning

Wavelength

1,064
nm
355
1,064
1.1e4

Spot Size

1,000
μm
0.1
1,000
1,200

Energy Density

2
J/cm²
0.1
2
20

Pulse Width

50
ns
0.1
50
1,000

Scan Speed

1,000
mm/s
10
1,000
5,000

Pass Count

3
passes
1
3
10

Overlap Ratio

50
%
10
50
90

Laser Power

100
W
1
100
120

Laser Power Alternative

500
W
100
500
2,000

Frequency

50
kHz
1
50
200

Concrete Material Safety

Shows damage risk across parameter space. Green = safe, Red = damage danger.
SAFE
Fluence:0.16 J/cm²
From optimal:13%
Pulse Duration (ns)
1000
750
500
250
0
0
33
67
100
133
167
200
Power (W)

Concrete Energy Coupling

Shows laser energy transfer efficiency. Green = high coupling (energy absorbed), Red = poor coupling (energy reflected).
MODERATE
Fluence: J/cm²
From optimal:42%
Pulse Duration (ns)
1000
750
500
250
0
0
33
67
100
133
167
200
Power (W)

Concrete Thermal Stress Risk

Shows thermal stress and distortion risk. Green = low stress risk, Red = high stress/warping/cracking risk.
ELEVATED
Fluence: J/cm²
From optimal:50%
Pulse Duration (ns)
1000
750
500
250
0
0
33
67
100
133
167
200
Power (W)

Concrete Cleaning Efficiency

Shows cleaning performance across parameter space. Green = optimal effectiveness, Red = ineffective.
SUBOPTIMAL
Fluence:0.16 J/cm²
From optimal:54%
Pulse Duration (ns)
1000
750
500
250
0
0
33
67
100
133
167
200
Power (W)

Concrete Heat Buildup

Safe

Heat Safety

Heat Control

Cooling Efficiency

Pass Optimization

📈 Heat Profile

Safe (<150°C)
Damage (>250°C)
0°C100°C200°C300°C✓ Safe🚨 Damage20°CPass 1Pass 2Pass 3

🔧 Laser Settings

Pulse Energy:2000.00 mJ
Total Sim Time:90.3s

🌡️ Live Temperature

20°C
✅ Safe
Pass 1 of 3
Time: 0.0s / 90.3s

▶️ Simulation Controls

Concrete Dataset

Download Concrete properties, specifications, and parameters in machine-readable formats
37
Variables
0
Laser Parameters
0
Material Methods
11
Properties
3
Standards
3
Formats

License: Creative Commons BY 4.0 • Free to use with attribution •Learn more

Parameter Relationships

WavelengthSpotSizeEnergyDensityPulseWidthScanSpeedPassCountOverlapRatioLaserPowerLaserPowerAlternativeFrequency

Spot Size

Directly affects Scan Speed and Energy Density. Increase this to amplify downstream effects.

Energy Density

Smaller spots concentrate energy into a smaller area.

Scan Speed

A bigger spot lets you scan faster while keeping good coverage.

Get Started

Schedule a service or reach out for more information