Zirconium surface undergoing laser cleaning showing precise contamination removal
Ikmanda Roswati
Ikmanda RoswatiPh.D.Indonesia
Ultrafast Laser Physics and Material Interactions

Zirconium Laser Cleaning Settings

In our experience, laser cleaning zirconium works best when we dial in conservative power levels right from the start. This metal's high reflectivity bounces back a lot of the laser energy, so we keep pulses short and scan speeds moderate to ensure contaminants lift off without scorching the surface underneath. We've found this approach restores that smooth, corrosion-resistant finish so crucial for nuclear or chemical applications, where even minor pitting could spell trouble. But watch out midway through—zirconium picks up oxygen fast if things heat up unevenly, leading to brittle spots that weaken its toughness. To sidestep that, we overlap passes just enough for even coverage, avoiding overexposure that might embrittle the material. Overall, treat it gentler than more absorbent alloys; adjust dwell times down if you see any whitening, and you'll get clean results that hold up in demanding environments.

Zirconium Machine Settings

Power Range

100
W
1
100
120

Wavelength

1,064
nm
355
1,064
1.1e4

Spot Size

50
μm
0.1
50
500

Repetition Rate

100
kHz
1
100
200

Energy Density

5.1
J/cm²
0.1
5.1
20

Pulse Width

10
ns
0.1
10
1,000

Scan Speed

500
mm/s
10
500
5,000

Pass Count

2
passes
1
2
10

Overlap Ratio

50
%
10
50
90

Dwell Time

100
μs
0
100
200

Zirconium Material Safety

Shows damage risk across parameter space. Green = safe, Red = damage danger.

DANGER
Fluence:50.93 J/cm²
From optimal:71%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Zirconium Energy Coupling

Shows laser energy transfer efficiency. Green = high coupling (energy absorbed), Red = poor coupling (energy reflected).

MODERATE
Fluence: J/cm²
From optimal:38%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Zirconium Thermal Stress Risk

Shows thermal stress and distortion risk. Green = low stress risk, Red = high stress/warping/cracking risk.

ELEVATED
Fluence: J/cm²
From optimal:54%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Zirconium Cleaning Efficiency

Shows cleaning performance across parameter space. Green = optimal effectiveness, Red = ineffective.

GOOD
Fluence:50.93 J/cm²
From optimal:33%
Pulse Duration (ns)
1000
750
500
250
0
1
21
41
61
80
100
120
Power (W)

Zirconium Heat Buildup

See if your multi-pass cleaning will overheat and damage the material

Excellent

Heat Safety

Heat Control

Cooling Efficiency

Pass Optimization

📈 Heat Profile

Safe (<150°C)
Damage (>250°C)
0°C100°C200°C300°C✓ Safe🚨 Damage20°CPass 1Pass 2

🔧 Laser Settings

Pulse Energy:1000.00 mJ
Total Sim Time:60.4s

🌡️ Live Temperature

20°C
✅ Safe
Pass 1 of 2
Time: 0.0s / 60.4s

▶️ Simulation Controls

Diagnostic & Prevention Center

Proactive strategies and reactive solutions for zirconium

🌡️thermal management

Heat accumulation

Impact: Excessive heat can damage substrate or alter material properties

Solutions:

  • Reduce repetition rate
  • Increase scan speed
  • Add cooling time between passes

Prevention: Monitor surface temperature and adjust parameters accordingly

🔍surface characteristics

Variable surface roughness

Impact: Inconsistent cleaning results across different surface textures

Solutions:

  • Adjust energy density based on surface condition
  • Use multiple passes with progressive settings
  • Pre-characterize surface before cleaning

Prevention: Standardize surface preparation procedures

Zirconium Dataset Download

License: Creative Commons BY 4.0 • Free to use with attribution •Learn more

Parameter Relationships

Shows how changing one parameter physically affects others. Click any node to see its downstream impacts and role.

PowerRangeWavelengthSpotSizeRepetitionRateEnergyDensityPulseWidthScanSpeedPassCountOverlapRatioDwellTime

Power Range

Amplifies damage risk in Pulse Width and Energy Density. Keep low to maintain safety margins.

Spot Size

Same power in a smaller spot creates much higher energy density.

Energy Density

Higher power delivers more energy per pulse, removing more material.

Pulse Width

More power means higher peak intensity. Too much can damage the material.

Pass Count

Using more passes means you can use lower power and still get the job done.