

Indium Laser Cleaning Settings
When laser cleaning Indium, you must start with a cautious low-power setup to avoid melting its soft surface, unlike tougher metals that handle more heat. Begin by pulsing gently to penetrate its high reflectivity, which reflects energy better than copper does. Slowly increase scan speed across the area, ensuring even passes that restore its conductive finish without warping. This approach clears contaminants while preserving Indium's malleability for electronics use.
Power Range
Wavelength
Spot Size
Repetition Rate
Fluence Threshold
Pulse Width
Scan Speed
Pass Count
Overlap Ratio
Indium Energy Coupling
Shows laser energy transfer efficiency. Green = high coupling (energy absorbed), Red = poor coupling (energy reflected).

Indium Thermal Stress Risk
Shows thermal stress and distortion risk. Green = low stress risk, Red = high stress/warping/cracking risk.

Indium Cleaning Efficiency
Shows cleaning performance across parameter space. Green = optimal effectiveness, Red = ineffective.

Heat Safety
Heat Control
Cooling Efficiency
Pass Optimization
📈 Heat Profile
🔧 Laser Settings
🌡️ Live Temperature
▶️ Simulation Controls
🌡️thermal management
Heat accumulation
Impact: Excessive heat can damage substrate or alter material properties
Solutions:
- ✓Reduce repetition rate
- ✓Increase scan speed
- ✓Add cooling time between passes
Prevention: Monitor surface temperature and adjust parameters accordingly
🔍surface characteristics
Variable surface roughness
Impact: Inconsistent cleaning results across different surface textures
Solutions:
- ✓Adjust energy density based on surface condition
- ✓Use multiple passes with progressive settings
- ✓Pre-characterize surface before cleaning
Prevention: Standardize surface preparation procedures
Indium Dataset Download
Parameter Relationships
Shows how changing one parameter physically affects others. Click any node to see its downstream impacts and role.

Power Range
Amplifies damage risk in Pulse Width. Keep low to maintain safety margins.
Spot Size
Same power in a smaller spot creates much higher energy density.
Pulse Width
More power means higher peak intensity. Too much can damage the material.
Pass Count
Using more passes means you can use lower power and still get the job done.

