

Polystyrene Laser Cleaning Settings
When laser cleaning Polystyrene, watch its tendency to soften under heat—I've seen it deform quickly if you push the power too high right away. This plastic heats unevenly compared to tougher thermoplastics like acrylic, so start slow to avoid melting the surface. First, lower the energy input to let the laser gently lift dirt without penetrating deep. Polystyrene's lightweight nature makes it less forgiving than metals, which shrug off minor overheating, but it cleans up nicely once you control the beam. Scan at a steady pace, overlapping passes lightly to build even coverage. I've found this works best when you keep the spot focused, preventing hot spots that could warp the material. Unlike denser plastics, its poor heat spread means you must pause between passes to cool down. Finish by checking for residue—Polystyrene holds onto grime stubbornly, but a second gentle run brings back its smooth finish without yellowing. Tends to shine up well for packaging or electronics jobs.
Power Range
Wavelength
Spot Size
Repetition Rate
Energy Density
Pulse Width
Scan Speed
Pass Count
Overlap Ratio
Polystyrene Material Safety
Shows damage risk across parameter space. Green = safe, Red = damage danger.

Polystyrene Energy Coupling
Shows laser energy transfer efficiency. Green = high coupling (energy absorbed), Red = poor coupling (energy reflected).

Polystyrene Thermal Stress Risk
Shows thermal stress and distortion risk. Green = low stress risk, Red = high stress/warping/cracking risk.

Polystyrene Cleaning Efficiency
Shows cleaning performance across parameter space. Green = optimal effectiveness, Red = ineffective.

Heat Safety
Heat Control
Cooling Efficiency
Pass Optimization
📈 Heat Profile
🔧 Laser Settings
🌡️ Live Temperature
▶️ Simulation Controls
🌡️thermal management
Heat accumulation
Impact: Excessive heat can damage substrate or alter material properties
Solutions:
- ✓Reduce repetition rate
- ✓Increase scan speed
- ✓Add cooling time between passes
Prevention: Monitor surface temperature and adjust parameters accordingly
🔍surface characteristics
Variable surface roughness
Impact: Inconsistent cleaning results across different surface textures
Solutions:
- ✓Adjust energy density based on surface condition
- ✓Use multiple passes with progressive settings
- ✓Pre-characterize surface before cleaning
Prevention: Standardize surface preparation procedures
Polystyrene Dataset Download
License: Creative Commons BY 4.0 • Free to use with attribution •Learn more
Parameter Relationships
Shows how changing one parameter physically affects others. Click any node to see its downstream impacts and role.

Power Range
Amplifies damage risk in Pulse Width and Energy Density. Keep low to maintain safety margins.
Spot Size
Same power in a smaller spot creates much higher energy density.
Energy Density
Higher power delivers more energy per pulse, removing more material.
Pulse Width
More power means higher peak intensity. Too much can damage the material.
Pass Count
Using more passes means you can use lower power and still get the job done.

